为提高真实场景下头部姿态估计的准确性,提出一种采用深度残差网络的头部姿态估计方法。将深度残差网络 Restnetl01作为主干网络,引入优化器提高深层卷积网络训练时的梯度稳定性,使用RGB图像并采用分类器计算交叉熵损失,同时结合回归损失预测欧拉角表示头部姿态。实验结果表明,与FAN地标检测方法和无关键点细粒度方法相比,该方法在AFLW2000数据集和BIwI数据集上的平均绝对误差值更小,分别达到5.396和2.922,在300WLP数据集上测试精度超过95%,在真实场景下具有较好的鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !