针对随机森林学习方法训练数据时存在的过拟合问题,通过改进各决策节点的决策函数设计一种模糊森林学习方法。利用高斯隶属度函数构建决策树上各节点的决策函数,将确定决策路径转换为模糊决策路径。根据样本从根节点到叶节点所经过的所有决策节点的模糊决策值乘积生成模糊路径。结合各模糊路径与相应叶节点预测参数得到预测结果。将模糊森林学习方法应用到行人检测领域,分别对Haar特征和方向梯度直方图特征进行学习与分类。实验结果表明,与经典的Adaboost、支持向量机和随机森林分类器相比,模糊森林方法可有效提高行人检测的识别率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !