非线性PCA在表面肌电信号特征提取中的应用
针对表面肌电信号的特点,提出了一种应用非线性主分量分析( PCA) 提取表面肌电信号特征的新方法. 该方法在表面肌电信号滤波的基础上,采用非线性PCA 方法完成数据压缩,将多路表面肌电信号转换为一维的特征数据主元,并以主元曲线的形式输出特征提取结果. 本文采用基于自组织神经网络的非线性PCA 对手臂尺侧腕伸肌和尺侧腕屈肌的两路表面肌电信号进行主元提取,试验结果表明,四种手部运动模式(握拳、展拳、腕外旋、腕内旋) 对应的表面肌电信号利用该方法处理后,得到的主元曲线具有很好的类区分性,依据所得主元曲线的形状特征可以有效地进行手部动作类别的识别.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !