×

如何使用非下采样Shearlet变换与模糊对比度提高图像质量

消耗积分:0 | 格式:rar | 大小:0.80 MB | 2019-01-03

分享资料个

  针对合成孔径雷达( SAR)图像在成像和传输过程中引入噪声和干扰从而导致图像清晰度下降、细节丢失等问题,提出了一种非下采样Shearlet变换(NSST)与模糊对比度的SAR图像增强算法。首先,原始图像经NSST分解成一个低频分量和若干个高频分量;然后对低频分量进行线性增强以提高整体对比度,对高频分量采用阈值法进行增强以去除图像中的噪声;接着对处理后的两部分分量进行NSST反变换得到重构图像;最后采用模糊对比度算法对重构图像进行增强,提高图像细节信息和层次感,得到增强后的图像。对40幅图像的实验结果表明,与直方图均衡化、多尺度Retinex增强算法、基于Shearlet变换和多尺度Retinex的遥感图像增强算法、基于剪切波域改进Gamma校正的医学图像增强算法相比,该算法的图像峰值信噪比至少提升了22.9%,均方根误差至少降低了36.2%,能明显提升图像的清晰度,使图像的纹理信息更加清晰。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !