×

如何使用大小核设计架构实现强效省电的多核处理器

消耗积分:0 | 格式:rar | 大小:0.16 MB | 2019-10-18

分享资料个

  大小核(big.LITTLE)晶片设计架构正快速崛起。在安谋国际(ARM)全力推广下,已有不少行动处理器开发商推出采用big.LITTLE架构的新方案,期透过让大小核心分别处理最适合的运算任务,达到兼顾最佳效能与节能效果的目的,以获得更多行动装置制造商青睐。

  近年行动领域出现重大变革,智慧型手机已成为消费者联网生活的主要工具,然而,这其中涉及各种高效能运算任务如高速网页浏览、导航与游戏,以及语音通话、社群网路和电子邮件服务等效能需求较低的「持续运作,永远连线」后台任务。

  与此同时,平板装置也正重新定义运算平台,这些创新设计转变均为消费者打造与内容互动的全新方式,将原本只限于网路共享装置(TetheredDevice)的功能导入行动领域,创造出真正的智慧型新世代运算。

  因应电子装置的快速变革,未来半导体向来遵循的摩尔定律(Moore’sLaw)又将如何往下发展?过去,预测晶片的效能每隔18个月就会倍增,而现今电晶体的数量已从数千增加到数十亿个,但若仔细观察单一处理器,就会发现整体的效能几乎呈现停滞不前的情况,这是因为系统能消耗的电量已达到高峰。

  克服晶片效能与功耗挑战big.LITTLE设计架构崭露头角

  对于未来任何一种处理器,处理速度都将受限于散热问题而无法大幅跃进。任何装置一旦达到热障(ThermalBarrier)就会开始融化,如果是行动电话,便会使装置温度上升造成使用者不适。除物理层面的散热问题外,能源效率也会变得相当差,若调校处理器实作使其速度加快,则所需耗能便会倍数增长,而为增加最后这一丁点的效能,后续导热设计的成本真的很高。

  在过去,处理器核心面积倍增代表速度倍增,但是现在面积倍增,速度却只增加几个百分点,因此复杂度并不代表有效率,这就是单一核心系统有所限制的原因之一。如果无法加快单一核心速度,就必须增加独立核心的数量,这也有助于每个核心去应对其被分配到的任务需求,有鉴于此,安谋国际(ARM)遂于2012年提出big.LITTLE处理器架构(图1)。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !