作者: Clive Maxfield,本文转载自:得捷电子DigiKey微信公众号
Xilinx的FPGA、SoC、MPSoC、RFSoC和ACAP产品介绍
Xilinx提供各种各样的可编程器件产品,性能和功能从中等到极高都有。范围从传统的FPGA到SoC(具有单个硬核心处理器的FPGA可编程结构)、MPSoC(具有多个硬核心处理器的FPGA可编程结构)、RFSoC(具有RF功能的MPSoC)和ACAP(自适应计算加速平台)(图1)。
对于部署方法,这些包括Xilinx自称的硬件自适应器件,其中包括芯片、评估板和开发套件;可部署的终端系统,包括系统级模块 (SoM) 和PCIe加速卡;以及FPGA即服务 (FAAS),包括通过领先的云提供商(包括Amazon Web Services[AWS]、Alibaba.com和Nimbix.net)评估和利用Xilinx技术。
对于Xilinx的FPGA产品,一种分类方法是通过工艺技术节点(图2)。
根据目标应用,设计人员可以选择基于较早的技术节点来实现低成本、小基底面的FPGA,或者针对最新的网络应用等,选择基于最新技术节点来实现高容量、高带宽、高性能器件。
对于需要一个或多个硬处理器内核(以及GPU、编解码器和软判决前向纠错 [SD-FEC] 内核等其他强化功能)的设计,Xilinx提供了一个以Zynq命名的器件产品组合。Zynq的SoC、MPSoC和RFSoC产品的摘要如图4所示。这套解决方案为设计人员提供了广泛的功能,能协助优化功耗、性能、成本和上市时间。
Xilinx的最新产品是Versal自适应计算加速平台 (ACAP) 器件,所有这些器件均基于7纳米 (nm) 工艺技术节点来实现。ACAP是高度集成的多核心计算平台,可以适应不断演进的各种算法。它们可以在硬件和软件级别进行动态定制,以适合各种应用和工作负载。ACAP 是围绕可编程片上网络 (NoC) 进行构建,硬件设计人员和软件开发人员都可以轻松对其进行编程。
Versal器件的新功能包括智能引擎,即用于ML和DSP工作负载的大规模矢量处理器阵列;可移动TB级数据的高带宽、低延迟和低功耗可编程NoC;以及一个集成的Shell,可通过预先构建的核心基础结构和系统连接性来提高性能、利用率和生产率。
图4显示了Versal ACAP产品组合的概述。
正如将在设计工具部分中的讨论,有关Versal器件的一个关键区别是新的软件堆栈。该堆栈主要面向数据科学家和软件工程师,以及传统硬件设计工程师。
市场上有各种各样的Xilinx器件可供选择。一些代表性的产品是Artix-7 FPGA、Kintex UltraScale FPGA、Kintex UltraScale+ FPGA、来自Trenz Electronic GmbH的Zynq-7000 SoC模块,以及Zynq UltraScale+ MPSoC。
同样,也有各种各样的评估板和开发板可供选择。一些代表性的产品包括来自Digilent的Artix-7 FPGA评估板、来自Analog Devices的Kintex UltraScale FPGA评估板、来自Xilinx的Kintex UltraScale+ FPGA评估板、来自Digilent的Zynq-7000 SoC FPGA评估板,以及来自Xilinx的Zynq UltraScale+ MPSoC FPGA评估板。
使用Xilinx的FPGA、SoC和ACAP进行设计和开发
Xilinx真正区别于竞争对手的一个因素是:设计工具和流程的广度和深度。
在本FPGA系列文章的第1部分中,我们指出这些器件的传统设计方法是让工程师使用Verilog或VHDL等硬件描述语言(HDL),在抽象级别(即寄存器传送级 [RTL])上捕获设计意图。首先可以对这些RTL描述进行仿真,以验证其是否符合要求,然后将其传送给综合工具,生成用于对FPGA进行编程的配置文件。
抽象的下一步是捕获设计意图,主要是使用C/C++之类的编程语言或SystemC这样的特殊实现工具;后者是一组C++类和宏,可提供事件驱动的仿真接口。这些方法有助于并发进程的仿真,每个进程都使用简单的C++语法进行描述。对于此类描述,可以通过像常规程序一样运行来进行分析和配置,然后传递给高级综合 (HLS) 引擎,由该引擎输出RTL,而RTL会传输至常规综合引擎。
所有这些功能都包含在Vivado设计套件HLx版中,其输出是配置比特流,随后会加载到目标FPGA、SoC、MPSoC、RFSoC或ACAP器件中。除了允许硬件开发人员利用基于C语言的设计和经优化的设计复用,Vivado还提供IP子系统复用、集成自动化和加速的设计收敛功能(图5)。
下一个抽象级别由Vitis统一软件平台支持,该平台使软件开发人员能够无缝构建加速型应用。从概念上讲,Vitis的上面是Vitis AI,它让AI和数据科学家可以在TensorFlow抽象级别工作。Vitis AI是在Xilinx硬件平台上进行AI推理的开发平台,同时包括边缘设备和Alveo PCIe卡。该平台由优化的IP、工具、库、模型和示例设计组成,旨在充分利用Xilinx的FPGA和ACAP器件上的AI加速潜力。
Vitis AI馈送至Vitis,而Vitis自身馈送至Vivado。图6中的关键点在于,用户仅“看到”他们需要“看到”的内容。也就是说,硬件开发人员将仅“看到”Vivado,软件开发人员将仅“看到”Vitis,而AI和数据科学家将仅“看到”Vitis AI。这样,用户就可以在最合适的抽象级别使用这些工具。
若为软件开发人员提供Vitis之类的工具套件,将他们与底层硬件隔离开来,便可使FPGA面向更多的开发人员开放。同样,若为AI和数据科学家提供Vitis AI之类的工具套件,使他们能够专注于自己的抽象级别并将其与底层软件隔离开来,则又会使FPGA面向新的开发人员群体开放。
在提供这些功能方面,Xilinx走在了全行业的前沿,致力于将FPGA工具提升到更高的设计抽象级别,这将使开发人员能够更轻松地利用这些器件的功能,并将其集成到接下来的设计中。
总结
最佳处理设计解决方案常常是由处理器与FPGA的组合提供,或由FPGA单独提供,或以硬处理器内核作为部分结构的FPGA提供。作为一项技术,FPGA多年来发展迅速,能够满足灵活性、处理速度、功耗等多方面的设计需求,非常适合智能接口、机器视觉和人工智能等众多应用。
如上所述,Xilinx提供许多可编程器件产品,性能和功能从中等到极高都有。这些产品范围从传统的FPGA到SoC(具有单个硬核心处理器的FPGA可编程结构)、MPSoC(具有多个硬核心处理器的FPGA可编程结构)、RFSoC(具有RF功能的MPSoC)和ACAP(自适应计算加速平台)。
为了帮助设计人员使用这些器件来构建设计,Xilinx提供了一套工具来满足硬件开发人员 (Vivado)、软件开发人员 (Vitis) 以及AI和数据科学家 (Vitis AI) 的需求。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !