ADC 服务的一些应用包括超高速多载波蜂窝基础设施基站、电信、数字预校正观测和回程接收器等——所有这些应用逐渐都要求 ADC 在每秒千兆次采样区间内进行采样。该模拟基础知识系列的第 1 部分和第 2 部分分别讨论了逐次逼近寄存器 (SAR) 和三角积分 (ΔƩ) ADC,以及如何在相应应用中使用这些 ADC。不过,这两种技术都无法应对生成每秒千兆次采样 (GSPS) 结果的挑战。

 

例如,SAR ADC 使用“快照”算法,由于采用串行方法,因此速度限制为不超过每秒 10 兆次采样 (MSPS)。当使用高分辨率 ΔƩ ADC 的过采样算法时,将需要额外的时间来采集多个样本并求平均,从而生成最高 5 兆赫兹 (MHz) 的 24 位输出数据速率。GSPS 速率远远超出了 SAR ADC 和 ΔƩ ADC 的采样频率范围。

 

流水线 ADC 就是应对这一超高速 ADC 挑战的解决方案,能够在处理多个采样的同时,仍以 GSPS 的速度将数据发送至其输出端。

 

本文先简要比较 ΔƩ、SAR 和流水线 ADC,接着讨论与实现高速转换器输出相关的问题,以及为什么流水线 ADC 是这类高速应用的理想替代品。然后介绍 Texas Instruments 的两款流水线 ADC,其中一款强调精度,另一款则强调高速度,最后介绍如何开始使用这些 ADC