×

基于DFP优化的大规模数据点拟合方法

消耗积分:0 | 格式:rar | 大小:0.33 MB | 2021-04-21

分享资料个

  DFP方法(由 Davidon, Fletcher和 Powell3人共同提出)是求解无约束优化问题的一种经典方法,文中指出数据点的拟合问题可转化为无约束优化问题的求解,并基于DFP优化方法给出了一种大规模数据点拟合方法,称之为DFP渐进迭代拟合方法。文中证明了该方法生成的极限曲线为初始数据点的最小二乘拟合曲线;它承袭了经典最小乘渐进迭代逼近算法的众多优良性质,如具备直观的几何意义、可灵活地拟合大规模数据点、初始控制顶点的选择不影响最终迭代结果等。数值实例进一步表明,同等条件下,文中方法的收敛速度明显优于现有的几种数据点拟合方法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !