×

视频中光流去除冗余信息的动作预测方法

消耗积分:0 | 格式:pdf | 大小:6.90 MB | 2021-05-12

分享资料个

  近年来使用光流作为输入特征的基于深度学习的动作预测方法逐渐成汋主流,但是光流由于环境因素等影响,极易引入无关的冗余信息,从而降低动作预测的精度,而现有方法并没有考虑到光流中的冗余信息。可以从三方面去除光流图中的冗余信息:消除视频中静止部分光流所带来的冗余信息;选取合理的运动区域以消除无关背景因素引入的光流冗余信息;评估相机的运动去除相机运动产生的光流冗余信息。针对去除冗余信息的光流图,提出了一种基于深度学习的动作预测框架,通过使用空间卷积和时间卷积来减少模型的参数,使用基于时间权重的投票机制实现了对动作的预测。在UT- -Interaction setl和set2数据集上的实验表明了该方法的有效性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !