降温负荷持续增长已成为中国南方夏季最大负荷屡创新高的重要原因。提出了一种基于信息熵和变精度粗糙集优化的不确定支持向量机方法,用于中长期降温负荷预测。方法通过挖掘数据中的相互关系去除冗余信息,从输入属性变量集中寻找核心变量。该方法利用基于信息熵改进的变精度粗糙集对支持向量机的条件属性进行约简,得到最小决策表,并将该最小决策表中对应的变量作为支持向量机预测模型的输入属性变量,进行年最大降温负荷预测。且随着预测年份的推移,该支持向量机预测模型的输入属性变量亦将随之滚动更新,能够为电网规划与运行人员提供不同预测时期降温负荷预测需重点关注的影响因子。最后,利用广东省实际数据对广东电网“十二五”和“十三五”年最大降温负荷进行预测,结果表明,所提的预测方法预测效果良好,预测精度稳定,对于中长期预测过程中的各种不确定因素的影响具有较好的鲁棒性,真正实现了中长期降温负荷的动态预测。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !