针对许多图像去噪方法在去除噪声的同时容易丢失细节信息的问题,提出了一种基于非局部自相似性的低秩稀疏图像去噪算法。首先,利用基于马氏距离( MD)的块匹配方法将外部自然干净图像块分组,建立基于块组的高斯混合模型( GMM)学习非局部自相似性先验;其次,采用稳健主成分追踪(SPCP)方法,将噪声图像矩阵分解为低秩、稀疏及噪声三部分,其中稀疏矩阵包含了稀疏的有用信息;最后,通过最小化全局目标函数实现去噪。实验结果表明,提出的方法在峰值信噪比( PSNR)及结构相似性(SSIM)的结果上比EPLL、NCSR、PCLR等先进去噪算法都有较大的提升,且速度更快,去噪效果及细节保留能力都有更好的表现。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !