根据密码芯片功耗曲线的特性,对支持向量机、随机森林、K最近邻、朴素贝叶斯4种机器学习算法进行分析研究,从中选择用于功耗分析攻击的最优算法。对于机器学习算法的数据选取问题,使用多组数量相同但组成元素不同的数据集的十折交叉验证结果进行模型选择,提高测试公平性及测试结果的泛化能力。为避免十折交叉验证过程中出现测试集误差不足以近似泛化误差的问题,采用 Fried man检验及 Nemeny后续检验相结合的方法对4种机器学习算法进行评估,结果表明支持向量机是适用于功耗分析攻击的最优机器学习算法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !