针对具有多个特征指标的模糊多传感器目标识别问题,提出一种新的模糊多传感器数据融合方法。该方法根据信息熵理论,引入不均衡度定义熵权矢量,通过求解数学规划问题,得到各目标类别的优属度,并给出目标识别规则。实验结果表明,该方法能提高目标识别结果的客观性和可信度,具有可操作性。
关键词:模糊传感器;数据融合;目标识别;熵权;优属度
【Abstract】Aiming at the object recognition problem with multiple characteristic indexes for the fuzzy multi-sensor, a new fusion method for the
fuzzy multi-sensor data is proposed. According to the theory of information entropy, the method introduces the disequilibrium index to define the
vector of entropy weight. By solving the mathematical programming, the optimal membership degree for each target type is obtained, and the rule of
object recognition is given. The method improves the objectivity and trustworthy degree of recognition result. The applied example proves that the
method is exercisable.
【Key words】fuzzy sensor; data fusion; object recognition; entropy weight; optimal membership
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !