锂离子电池主要由正极、负极、隔膜和电解液,以及结构件等部分组成,在锂离子电池的外部,通过导线和负载等,将负极的电子传导到正极,而在电池内部,正负极之间则通过电解液进行连接,在放电的时候,Li+通过电解液从负极扩散到正极,嵌入到正极的晶体结构之中。所以在锂离子电池中,电解液是非常重要的一环,对锂离子电池的性能有着重要的影响。理想的情况下,正负极之间应该有充足的电解液,在充放电的过程中都应该具有足够的Li+浓度,从而减小由于电解液的浓差极化造成的性能衰降。但是在实际充放电过程中,受制于Li+扩散速度等因素,在正负极会产生Li+浓度梯度,Li+浓度随着充放电而波动。由于结构设计和生产工艺等原因,还会导致电解液在电芯内部的分布不均匀,特别是在充电的过程中,随着电极的膨胀,会在电芯的内部形成部分“干区”,“干区”的存在导致了能够参与到充放电反应中的活性物质减少,引起电池内局部SoC不均匀,从而导致电池内局部老化速度加快。M.J. Mu hlbauer在研究锂离子电池老化对Li分布的影响中曾发现,由于在充放电过程中,正负极极片都存在一定体积膨胀,导致电芯也存在一定程度的体积膨胀和收缩,电芯会如同“呼吸”一般,反复的“吸入”和“吐出”电解液,所以不同时刻,电解液在电芯内的浸润情况也在实时变化(如下图所示)。
受限于技术手段,以往我们对于在充放电过程中电解液在锂离子电池内部的行为缺少直观的认识,更像是研究一个黑箱,我们提出各种理论,对起行为进行推测。为了更加形象和直观的研究电解液在锂离子电池内的行为特点,日本京都大学的Toshiro Yamanaka等[2]利用拉曼光谱工具对叠片方形锂离子电池进行了研究,该研究最大的特点是实现了对充放电过程中电解液的分布和电解液内离子浓度变化情况的实时观测。实验中Toshiro Yamanaka采用了方形叠片电池作为研究对象,电解液则采用了EC和DEC溶剂,LiClO4作为电解质盐,为了能够对电芯内部电解液的行为进行实时观测,Toshiro Yamanaka在叠片锂离子电池内部引入了8根光纤作为拉曼光谱的探测器,研究电解液在电池内的浸润和离子浓度的变化情况,8根光纤在电池内的排布如下图c所示,
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !