×

光的原理与激光技术之激光晶体介绍

消耗积分:0 | 格式:rar | 大小:0.1 MB | 2017-10-16

分享资料个

  光的原理早在1916年已被著名的美国物理学家爱因斯坦发现,但直到1960年激光才被首次成功制造。激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。

  然而,像激光激光切割,激光焊接已经普遍运用的生活生产之中,而还有激光晶体,太赫兹之类的激光知识,我们却很少接触,本文笔者带领大家一起了解一下那些我们不熟悉的激光技术。

  激光晶体

  激光晶体可将外界提供的能量通过光学谐振腔转化为在空间和时间上相干的具有高度平行性和单色性激光的晶体材料。是晶体激光器的工作物质。激光晶体由发光中心和基质晶体两部分组成。大部分激光晶体的发光中心由激活离子构成,激活离子部分取代基质晶体中的阳离子形成掺杂型激光晶体。激活离子成为基质晶体组分的一部分时,则构成自激活激光晶体。

  激光晶体所用的激活离子主要为过渡族金属离子和三价稀土离子。过渡族金属离子的光学电子是处于外层的3d电子,在晶体中这种光学电子易受到周围晶场的直接作用,所以在不同结构类型的晶体中,其光谱特性有很大差异。三价稀土离子的4f电子受到5s和5p外层电子的屏蔽作用,使晶场对其作用减弱,但晶场的微扰作用使本来禁戒的4f电子跃迁成为可能,产生窄带的吸收和荧光谱线。所以三价稀土离子在不同晶体中的光谱不像过渡族金属离子变化那么大。

  激光晶体所用的基质晶体主要有氧化物和氟化物。作为基质晶体除要求其物理化学性能稳定,易生长出光学均匀性好的大尺寸晶体,且价格便宜,但要考虑它与激活离子间的适应性,如基质阳离子与激活离子的半径、电负性和价态应尽可能接近。此外,还要考虑基质晶场对激活离子光谱的影响。对于某些具有特殊功能的基质晶体,掺入激活离子后能直接产生具有某种特性的激光,如在某些非线性晶体中,激活离子产生激光后通过基质晶体能直接转换成谐波输出。

  使用较多的是:Nd:YAG,Nd:YVO4

  太赫兹

  THz波(太赫兹波)或称为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.3THz到3THz范围的电磁波,波长大概在0.1mm(100um)到1mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um(0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。

  太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。

  THz时域光谱技术:目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是美国,欧洲和日本的厂家。THz时域光谱技术的基本原理是利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,由于大分子的振动和转动能级大多在THz波段,而大分子,特别是生物和化学大分子是具有本身物性的物质集团,进而可以通过特征频率对物质结构、物性进行分析和鉴定。一个比较重要的应用可以作为药品质量监管。设想一下制药厂的流水线上安装一台THz时域光谱仪,从药厂出厂的每一片药都进行光谱测量,并与标准的药物进行光谱对比,合格的将进入下一个环节,否则在流水线上将劣质药片清除掉,避免不同药片或不同批次药片的品质差异,保证药品的品质。

  THz成像技术:跟其他波段的成像技术一样,THz成像技术也是利用THz射线照射被测物,通过物品的透射或反射获得样品的信息,进而成像。THz成像技术可以分为脉冲和连续两种方式。前者具有THz时域光谱技术的特点。同时它可以对物质集团进行功能成像,获得物质内部的折射率分布。例如葵花籽可以和容易获得葵花子的内部信息。图3-4给出了葵花籽样品的实物照片和相应方法重构的THz透射图像,能清晰地分辨果壳的轮廓和隐藏在果壳中果仁的形状,这是最希望的。同样,如果样品是人的牙齿,那么牙齿的正常部分与损蛀部分将很容易的区分开,同时不必照射x射线,对人体没有附加伤害。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !