为了正确判断管道是否发生泄漏,本文采用混合学习方法对网络进行训练学习。通过将管道运行参数作为神经网络的输入,管道运行状态作为神经网络的输出,实现两者的非线性映射,以此来判断输入信号是否为泄漏信号,并选用K-means聚类方法和递推最小二乘法来确定网络参数。通过用天然气管道运行的实测数据对RBF神经网络进行了训练和测试,得到结果误差在可接受的范围内,从而证明RBF神经网络的方法可用于天然气管道泄漏检测的研究。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !