×

一种基于标签概率相关性的微博推荐方法

消耗积分:0 | 格式:rar | 大小:0.82 MB | 2017-11-17

分享资料个

  向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径。通过分析微博的特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种基于标签概率相关性的微博推荐方法LPCMR。首先,该方法利用标签之间的概率相关性,构造标签相似性矩阵。然后通过相关性标签权重加权方案,加强标签权重,构建用户标签矩阵。针对用户标签矩阵稀疏的问题,采用标签相似性矩阵对用户标签矩阵进行更新,使该矩阵既包含用户兴趣信息,又包含标签与标签之间的关系。以新浪微博公开API抓取的微博信息作为实验数据,进行了一系列的实验和分析,结果表明本文提出的推荐算法具有较好的效果。

一种基于标签概率相关性的微博推荐方法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !