×

基于快速低秩编码与局部约束的图像分类算法

消耗积分:1 | 格式:rar | 大小:0.66 MB | 2017-11-24

分享资料个

  针对快速低秩编码算法存在特征重建误差较大,以及特征间局部约束条件丢失的问题,提出一种强化局部约束的快速低秩编码算法。首先,使用聚类算法对图像中特征进行聚类,得到局部相似特征集合及其对应的聚类中心;其次,在视觉词典中采取K最近邻( KNN)策略查找聚类中心对应的K个视觉单词,并将其组成对应的视觉词典;最后,使用快速低秩编码算法获得局部相似特征集合对应的特征编码。改进算法在Scene-15和Caltech-101图像库上的分类准确率比快速低秩编码算法提高4qo到8%,编码效率比稀疏编码算法提高5-6倍。实验结果表明,改进算法使得局部相似特征具有相似编码,从而更加准确地表达图像内容,能有效提高分类准确率及编码效率。

基于快速低秩编码与局部约束的图像分类算法

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !