针对传统新闻图像中人脸标注方法主要依赖人脸相似度信息,分辨噪声和非噪声人脸能力以及非噪声人脸标注能力较差的问题,提出一种基于多模态信息融合的新闻图像人脸标注方法。首先根据人脸和姓名的共现关系,利用改进的K近邻算法,获得基于人脸相似度信息的人脸姓名匹配度;然后,分别从图像中提取人脸大小和位置的信息对人脸重要程度进行表征,从文本中提取姓名位置信息对姓名重要程度进行表征;最后,使用反向传播神经网络来融合上述信息完成人脸标签的推理,并提出一个标签修正策略来进一步改善标注结果。在Label Yahool News数据集上的测试效果表明,所提方法的标注准确率、精度和召回率分别达到了77. llqo、73. 58%和78. 75%,与仅基于人脸相似度的算法相比,具有较好的分辨噪声和非噪声人脸能力以及非噪声人脸标注能力。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !