针对稀疏信号的重构问题,提出了一种基于反馈神经网络(RNN)的优化算法。首先,需要对信号进行稀疏表示,将数学模型化为优化问题;接着,基于L范数是非凸且不可微的函数,并且该优化问题是NP难的,因此在测量矩阵A满足有限等距性质( RJP)的前提下,提出等价优化问题;最后,通过建立相应的Hopfield反馈神经网络模型来解决等价的优化问题,从而实现稀疏信号的重构。实验结果表明,在不同观测次数m下,对比RNN算法和其他三种算法的相对误差,发现RNN算法相对误差小,且需要的观测数也少,能够高效地重构稀疏信号。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !