MapReduce计算场景下,复杂的大数据挖掘类算法通常需要多个MapReduce作业协作完成,但多个作业之间严重的冗余磁盘读写及重复的资源申请操作,使得算法的性能严重降低。为提高ItemBased推荐算法的计算效率,首先对MapReduce平台下ItemBased协同过滤算法存在的性能问题进行了分析;在此基础上利用Spark迭代计算及内存计算上的优势提高算法的执行效率,并实现了基于Spark平台的ItemBased推荐算法。实验结果表明:当集群节点规模分别为10与20时,算法在Spark中的运行时间分别只有MapReduce中的25.6%及30. 8%,Spark平台下的算法相比MapReduce平台,执行效率整体提高3倍以上。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !