针对单输入单输出非线性系统的不确定性问题,提出了一种新型的基于扩展反向传播(BP)神经网络的自适应控制方法。首先,采用离线数据来训练BP神经网络的权值向量;然后,通过在线调节伸缩因子和逼近精度估计值的更新律,从而来达到控制整个系统的目的。在控制器的设计过程中,利用李亚普诺夫稳定性分析原理,保证了闭环系统的所有状态一致终极有界(UUB)。相比传统的BP神经网络自适应控制,所提方法能有效地减少在线调节的参数数目、减轻计算负担。仿真结果表明,该方法能够使闭环系统的所有状态都趋于零,即系统达到稳定状态。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !