针对多规则有序决策系统中的偏好决策问题,根据有序决策的偏好不一致特性,提出了一种基于偏好不一致熵的偏好决策方法。首先,定义了样本的偏好不一致熵( PIEO),用来度量特定样本相对于样本集的偏好不一致程度;然后,根据偏好决策中不同属性对决策的重要性不同的特点,提出了一种加权的样本偏好不一致熵,并结合属性偏好不一致熵在度量属性重要性方面的能力,给出了一种基于属性偏好不一致熵的权值的计算方法;最后,提出了一种基于样本偏好不一致熵的偏好决策算法。采用Pasture Production和Squalsh两个数据集进行仿真实验,基于全局偏好不一致熵分类后,各属性的偏好不一致熵普遍比基于向上和向下偏好不一致熵分类后的熵值小,而且更接近原始决策的偏好不一致熵,这说明基于全局偏好不一致熵的分类比其他两种情况的分类效果好。分类偏离度最小低至0. 1282,这说明分类的结果比较接近原始决策。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !