×

三种用于垃圾网页检测的随机欠采样集成分类器

消耗积分:3 | 格式:rar | 大小:0.98 MB | 2017-12-06

分享资料个

  针对垃圾网页检测过程中轻微的不平衡分类问题,提出三种随机欠采样集成分类器算法,分别为一次不放回随机欠采样( RUS-once)、多次不放回随机欠采样(RUS-multiple)和有放回随机欠采样(RUS-replacement)算法。首先使用其中一种随机欠采样技术将训练样本集转换成平衡样本集,然后对每个平衡样本集使用分类回归树( CART)分类器算法进行分类,最后采用简单投票法构建集成分类器对测试样本进行分类。实验表明,三种随机欠采样集成分类器均取得了良好的分类效果,其中RUS-multiple和RUS-replacement比RUS-once的分类效果更好。与CART及其Bagging和Adaboost集成分类器相比,在WEBSPAM UK-2006数据集上,RUS-multiple和RUS-replacement方法的AUC指标值提高了10%左右,在WEBSPAM UK-2007数据集上,提高了25%左右;与其他最优研究结果相比,RUS-multiple和RUS-replacement方法在AUC指标上能达到最优分类结果。

三种用于垃圾网页检测的随机欠采样集成分类器

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !