针对多标记学习和集成学习在解决蛋白质多亚细胞定位预测问题上应用还不成熟的状况,研究基于集成多标记学习的蛋白质多亚细胞定位预测方法。首先,从多标记学习和集成学习相结合的角度提出了一种三层的集成多标记学习系统框架结构,该框架将学习算法和分类器进行了层次性分类,并把二分类学习、多分类学习、多标记学习和集成学习进行有效整合,形成一个通用型的三层集成多标记学习模型;其次,基于面向对象技术和统一建模语言(UML)对系统模型进行了设计,使系统具备良好的可扩展性,通过扩展手段增强系统的功能和提高系统的性能;最后,使用Java编程技术对模型进行扩展,实现了一个学习系统软件,并成功应用于蛋白质多亚细胞定位预测问题上。通过在革兰氏阳性细菌数据集上进行测试,验证了系统功能的可操作性和较好的预测性能,该系统可以作为解决蛋白质多亚细胞定位预测问题的一个有效工具。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !