用户提交的软件错误报告随意性大、主观性强且内容少导致自动分类正确率不高,需要花费大量人工干预时间。随着互联网的快速发展用户提交的错误报告数量也不断增加,如何在海量数据下提高其自动分类的精确度越来越受到关注。通过改进词频一逆文档频率( TF-IDF),考虑到词条在类间和类内出现情况对文本分类的影响,提出一种基于软件错误报告数据集的改进多项式朴素贝叶斯算法,同时在Hadoop平台下使用MapReduce计算模型实现该算法的分布式版本。实验结果表明,改进的多项式朴素贝叶斯算法将F1值提高到7l%,比原算法提高了27个百分点,同时在海量数据下可以通过拓展节点的方式缩短运行时间,有较好的执行效率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !