×

不确定数据频繁闭项集挖掘算法

消耗积分:2 | 格式:rar | 大小:0.57 MB | 2018-01-02

分享资料个

  由于不确定数据的向下封闭属性,挖掘全部频繁项集的方法会得到一个指数级的结果。为获得一个较小的合适的结果集,研究了在不确定数据上挖掘频繁闭项集,并提出了一种新的频繁闭项集挖掘算法-NA-PFCIM。该算法将项集挖掘过程看作一个概率分布函数,考虑到基于正态分布模型的方法提取的频繁项集精确度较高,而且支持大型数据库,采用了正态分布模型提取频繁项集。同时,为了减少搜索空间以及避免冗余计算,利用基于深度优先搜索的策略来获得所有的概率频繁闭项集。该算法还设计了两个剪枝策略:超集修剪和子集修剪。最后,在常用的数据集( T1014DIOOK、Accidents、Mushroom、Chess)上,将提出的NA-PFCIM算法和基于泊松分布的A-PFCIM算法进行比较。实验结果表明,NA-PFCIM算法能够减少所要扩展的项集,同时减少项集频繁概率的计算,其性能优于对比算法。
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !