×

基于异常检测模型的MapReduce性能优化

消耗积分:1 | 格式:rar | 大小:0.77 MB | 2018-01-03

分享资料个

  针对“落伍者”的选择问题,提出利用故障诊断领域内通常使用的异常检测模型来选择“落伍者”的方法。首先,利用异常检测算法来发现集群中的“慢节点”;然后改进MapReduce任务分配算法和推测执行算法,不再给“慢节点”分配任务并将“慢节点”中的任务分配至有空闲任务槽的正常节点中。在改进的推测执行算法中,因相同网段内的节点通常物理邻近,可提高数据传输速度,首次将“慢节点”中的任务分配至同网段的正常节点中,以便数据传输。实例验证结果表明,使用异常检测算法后可迅速检测出异常节点,且与Hadoop-LATE算法相比,处理相同任务量可缩短集群17%的任务处理时间,说明所提算法在集群整体性能优化中表现优异。

基于异常检测模型的MapReduce性能优化

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !