×

深度学习的机会网络链路预测

消耗积分:1 | 格式:rar | 大小:2.14 MB | 2018-01-04

分享资料个

  针对机会网络节点移动性、节点间间歇性连接等特点,提出基于深度学习的机会网络链路预测机制,基于时间序列理论和方法,综合考虑节点间边的杈值、节点强度和局部路径与节点间链路关系,构建反映机会网络链路状态随时间动态变化的相似性指标W_Katz;利用信息熵确定受限玻尔兹曼机的隐含层神经元数量,构建用于特征提取的深度学习模型,采用自适应学习率缩短其收敛时间;采用高斯核函数、K折交叉验证构造基于最小二乘支持向量回归机的预测模型;采用命中率R HIT和受试者工作特征曲线的Precision、Accuracy指标评价预测结果.通过INF 2005、MIT数据集上的对比实验结果表明,该方法可以获得更好的预测效果.
 

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !