为提高均匀线性阵列(ULA)系统盲识别过程的计算效率,提出一种改进的ULA盲识别算法。建立ULA信号传播模型,针对该传播模型给出广义生成函数的代数结构以及参数估计方式,利用交替最小二乘法对ULA广义生成函数进行求解,并在此基础上引入Tucker张量分解改进交替最小二乘法,实现广义生成函数的降维处理。实验结果表明,与经典DUET算法、欠定混叠盲辨识分解算法等相比,该算法具有更高的计算效率以及更好的ULA盲识别效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !