针对互联网流量标注困难以及单个聚类器的泛化能力较弱,提出一种基于互信息( MI)理论的选择聚类集成方法,以提高流量分类的精度。首先计算不同初始簇个数K的K均值聚类结果与训练集中流量协议的真实分布之间的规范化互信息(NMI);然后基于NMI的值来选择用于聚类集成的K均值基聚类器的K值序列;最后采用二次互信息( QMI)的一致函数生成一致聚类结果,并使用一种半监督方法对聚类簇进行标注。通过实验比较了聚类集成方法与单个聚类算法在4个不同测试集上总体分类精度。实验结果表明,聚类集成方法的流量分类总体精度能达到90%。所提方法将聚类集成模型应用到网络流量分类中,提高了流量分类的精度和在不同数据集上的分类稳定性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !