为提高长时目标跟踪的鲁棒性和准确性,提出一种改进的跟踪学习检测( TLD)方法。利用少量具有尺度不变特性的BRISK特征点和均匀分布点组成跟踪点集合代替TLD中的均匀分布跟踪点。这样不仅可以减少跟踪部分的计算量,而且可以提高跟踪的鲁棒性。当跟踪器利用前后项误差检测到遮挡时,通过使用目标的空间上下文信息扩大跟踪范围再次跟踪,进而解决遮挡的问题。实验结果表明,改进的TLD方法在多个测试序列上都有较好的跟踪性能,与传统的TLD相比,鲁棒性更好,准确率更高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !