随着互联网的飞速发展,网络攻击行为日益频繁。 Webshel是常见的网络攻击方传统的检测手段已无法应对复杂灵活的变种 Webshell攻击。为解决这一问题,提出了一种基于TF-IDF的 Webshell文件检测方法。系统首先对不同类型的Webshell文件进行分类,并对不同文件进行相应的预处理转码,以降低混淆干扰技术对检测的影响;随后建立词袋模型,并采用TF-IDF算法加权提取相关特征;最后使用 Xgboost算法训练得到检测模型。与传统机器学习算法进行的10折交叉验证对比测试表明,使用TF-IDF算法预处理后结合Ⅹ Gboost算法的 Webshel文件检测模型性能岀色,检测效果相较于传统检测方法在准确率、精确率、召回率等方面均有所提高,同时具备更强的鲁棒性与泛化能力,其中对PHP类型文件检测的准确率达到了8.09%,对JSP类型文件检测准确率达到了97.09%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !