×

用于动作分类和定位的稀疏标记数据集

消耗积分:2 | 格式:rar | 大小:0.60 MB | 2018-02-28

分享资料个

  图像分类和目标检测领域近年来取得了重大的平行进展。可以认为,这些进展归功于数据集的质量提高和数量增长,进而逐步成功地应用到了更复杂的学习模型中。在图像分类中,我们有从 Caltech101(2004,只有 9146 个样本)到 ImageNet(2011,包含 120 万个样本)这样的数据集。在目标检测中,尽管收集边界框信息所需的额外人类标注成本提高了,但也出现了训练集规模逐渐扩展的相似趋势。Pascal VOC(2007)只包含 1578 个样本,而最近提出的 COCO 数据集包含超过 20 万张图像和 50 万个目标实例标注。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !