Most commonly-used electrical temperature sensors are difficult to apply. For example, thermocouples have low output levels and require cold junction compensation. Thermistors are nonlinear. In addition, the outputs of these sensors are not linearly proportional to any temperature scale. Early monolithic sensors, such as the LM3911, LM134 and LM135, overcame many of these difficulties, but their outputs are related to the Kelvin temperature scale rather than the more popular Celsius and Fahrenheit scales. Fortunately, in 1983 two I.C.’s, the LM34 Precision Fahrenheit Temperature Sensor and the LM35 Precision Celsius Temperature Sensor, were introduced. This application note will discuss the LM34, but with the proper scaling factors can easily be adapted to the LM35. The LM34 has an output of 10 mV/°F with a typical nonlinearity of only ±0.35°F over a −50 to +300°F temperature range, and is accurate to within ±0.4°F typically at room temperature (77°F). The LM34’s low output impedance and linear output characteristic make interfacing with readout or control circuitry easy. An inherent strength of the LM34 over other currently available temperature sensors is that it is not as susceptible to large errors in its output from low level leakage currents. For instance, many monolithic temperature sensors have an output of only 1 μA/°K. This leads to a 1°K error for only 1 μ-Ampere of leakage current. On the other hand, the LM34 may be operated as a current mode device providing 20 μA/°F of output current. The same 1 μA of leakage current will cause an error in the LM34’s output of only 0.05°F (or 0.03°K after scaling).