为应对抽样不均匀带来的影响,以基于代表的分类算法为基础,提出一种用于符号型数据分类的留一法集成学习分类算法( LOOELCA)。首先采用留一法获得个小训练集,其中为初始训练集大小。然后使用每个训练集构建独立的基于代表的分类器,并标注出分类错误的分类器及对象。最后,标注分类器和原始分类器形成委员会并对测试集对象进行分类。如委员会表决一致,则直接给该测试对象贴上类标签;否则,基于后最近邻( kNN)算法并利用标注对象对测试对象分类。在UCI标准数据集上的实验结果表明,LOOELCA与基于代表的粗糙集覆盖分类( RBC-CBNRS)算法相比,精度平均提升0.35~2.76个百分点,LOOELCA与ID3、J48、Naive Bayes、OneR等方法相比也有更高的分类准确率。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !