卷积神经网络因具有强大的表征能力而被广泛用于图像处理算法,但其在处理过程中存在耗时和信息损失等不足。为此,提出一种基于非对称空间金字塔池化模型的卷积神经网络结构。设计非对称金字塔池化方法融入立体匹配网络,以获取更详细的图像特征信息。分别叠加卷积核为3×3和1×1的卷积层,用于融合多尺度信息和提升网络收敛速度,同时将网络结构由4层增加至7层,以提高匹配精度。在KIT和 Middlebury数据集上进行视差预测,实验结果表明,与基准网络相比,该网络结构可使收敛时间缩短约50.1%,匹配错误率从6.65%降低至4.78%,在立体匹配中获得更平滑的视差效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !