命名实体识别(NER)是自然语言处理的核心应用任务之一。传统和深度命名实体识别方法严重依赖于大量具有相同分布的标注训练数据,模型可移植性差。然而在实际应用中数据往往都是小数据、个性化数据,收集足够的训练数据是非常困难的。在命名实体识别中引λ迁移学习,利用源堿数据和模型完成目标堿任务模型构建,提高目标领域的标注数据量和降低目标堿模型对标注欻据数量的濡求,在处理资源匮乏命名实体识别任务上,具有非常好的效果。首先对命名实体识别方法和难点以及迁移学习方法进行概述;然后对近些年应用于命名实体识别的迁移学习方法,包括基于数据迁移学习、基于模型迁移学习和对抗迁移学习,进行全面综述,重点阐述了对抗迁移学习方法;最后进一步思考当前存在的问题并对未来的研究方向进行了展望。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !