×

基于BERT的中文科技NLP预训练模型

消耗积分:0 | 格式:pdf | 大小:1.50 MB | 2021-05-07

分享资料个

  深度学习模型应用于自然语言处理任务时依赖大型、高质量的人工标注数据集。为降低深度学习模型对大型数据集的依赖,提出一种基于BERT的中文科技自然语言处理预训练模型 ALICE。通过对遮罩语言模型进行改进并将其与命名实体级遮罩相结合,改善基础模型在下游任务中的表现,使其学习到的语言表征更贴合中文的语言特性。实验结果表明,与BERT模型相比, ALICE模型对于中文科技文本的分类准确率和命名实体识别的F值分别提高1.2%和0.8%。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !