强化学习是人工智能领域中的一个研究热点。在求解强化学习问题时,传统的最小二乘法作为一类特殊的函数逼近学习方法,具有收敛速度快、充分利用样本数据的优势。通过对最小二乘时序差分算法( Least-squares Temporal DifferenceLSTD)的研究与分析,并以该方法为基础提出了双权重最小二乘 Sarsa算法( Double Weights With Least Squares Sarsa,DWLSrsa)。 Dwls-sarsa算法将两权重通过一定方式进行关联得到目标权重,并利用 Sarsa方法对时序差分误差进行控制。在算法训练过程中,两权重会因为更新样本的不同而产生不同的值,保证了算法可以有效地进行探索;两权重也会因为样本数据的分布而逐渐缩小之间的差距直到收敛至同一最优值,确保了算法的收敛性能。最后将DwLS- Sarsa算法与其他强化学习算法进行实验对比,结果表明 Dwls-sarsa算法具有较优的学习性能与鲁棒性,可以有效地处理局部最优问题并提高算法收敛时的表现效果。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !