文本摘要生成技术能够从海量数据中概括岀关键信息,有效解决用户信息过载的问题。目前序列到序列模型被广泛应用于英文文本摘要生成领域,而在中文文本摘要生成领域没有对该模型进行深λ硏究。对于传统的序列到序列模型,解码器通过注意力机制将编码器输岀的毎一个词的隐藏状态作为原始文本完整的语乂信息来生成摘要,但是编码器输岀的毎一个词的隐藏状态仅包含前、后词的语义信息,不包含原始文本完整的语义信息,导致生成摘要缺失原始文本的核心信息,影响生成摘要的准确性和可读性。为此,文中提出基于语义感知的中文短文本摘要生成模型SA-Seq2Seq,以结合注意力机制的序列到序列模型为基础,通过使用预训练模型BERT,在编码器中将中文短文本作为整体语义信息引入,使得毎一个词包含整体语义信息;在解码器中将参考摘要作为目标语义信息计算语义不一致损失,以确保生成摘要的语义完整性。采用中文短文本摘要数据集 LCSTS进行实验,结果表明,模型 Sa-seq2Seq在评估标准 ROUGE上的效果相对于基准模型有显著提高,其 ROUGE-,ROUGE2和 ROUGE-I评分在基于字符处理的数据集上分别提升了3.4%,7.1%和6.1%,在基于词语处理的数据集上分别提升了2.7%,5.4%和11.7%,即模型SA-Seq2Seq能够更有效地融合中文短文本的整体语义信息,挖掘其关键信息,确保生成摘要的流畅性和连贯性,可以应用于中文短文本摘要生成任务。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !