×

基于图像语义分割的毛笔笔触实时生成技术

消耗积分:0 | 格式:pdf | 大小:0.42 MB | 2021-06-07

分享资料个

  书法在文化传承中占据重要地位,书法书写笔迹的生成也一直是计算机图形学的研究重点和难点。现存基于模型和经验的方法,由于建模难度大,大都将笔触表述为简单的几何图形并且缺少变化。难以真实还原毛笔书写的笔触和笔迹。使得现存书法笔迹生成软件仅仅用于娱乐,而难以上升到数字化书法教育层面。文中从计算机视觉的角度出发,通过4个相机获取毛笔的实时书写图像:针对 Deeplabv3+语义分割算法无法有效地分割小尺寸类别的缺点进行优化,使用优化的 Deeplab3+算法提取图像中毛笔笔头等关键信息,并通过变换和PnP位姿估计算法计算笔杄相对位姿:基于位姿信息矫正和融合各相杋笔触图像。提岀一种未知区域估计方法估计相杋无法拍摄到的笔触区域。按照不同条件提取400多幅书写图像作为数据集并进行实验结果表明,优化后的Dε mplab3-算法平均交并比( mean intersection-over- union,mIOU)达到与优化前相比提升了在小尺寸类别上交并比(intersection-ove达到提升了0.473.在保证实时性的前提下,最终生成的笔触与传统基于模型和经验的方法相比、可以更加真实地还原书写时的笔触,并避免对毛笔进行复杂的建模。为笔迹生成研究提供一种新的思路。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !