×

快速单像素多目独立成分设计

消耗积分:3 | 格式:rar | 大小:322 | 2009-02-27

久醉不醒

分享资料个

分析了LCNN的约束项的物理意义,认为约束项λ是有监督学习的加速度,使得整个算法无论是学习矩阵还是独立成分的求解效率都可达到O(n)。针对不同的λ和源信号、观测信号对的不同特性,提出了4种快速LCNN算法,分析了静态图像独立成分分析模型,建立了单像素内的独立模型,并总结了其优势。
关 键 词 Helmholtz自由能; 独立成分分析(ICA); Lagrange约束神经网络; 单像素内独立成分模型

Abstract The traditional independent component analysis is based on statistics mean of all aposteriori data and dismissed geometry. The classical lagrange constraint neural network (LCNN) employs Helmholtz free energy to unify supervised and unsupervised learning, and uses aprior and multi-sensing to solve independent components in one pixel, whose geometrical grain reached single pixel. The operations among pixels can be completely run parallelly. However, the constraints of classical LCNN bring ill-conditional matrix. In this paper, the real meaning of the constraints λ is discussed, four fast LCNN algorithms are proposed, the independent component (IC) models of still image is analyzed, and a new sub-pixel IC model is presented.
Key words Helmholtz free energy; independent component; lagrange constraint neural network; sub-pixel independent component model

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !