×

基于微粒群优化的图像分类方法研究

消耗积分:3 | 格式:rar | 大小:162 | 2009-06-10

分享资料个

论文提出了一种新的图象分类算法——基于微粒群的图象分类算法。将此算法和K 均值聚类算法分别应用于MRI 人脑图象的分类,并进行了比较。实验结果表明:基于微粒群的图象分类算法具有较好的全局收敛性,不仅能有效克服K 均值算法易陷入局部极小
值的缺点,而且全局收敛性能优于K 均值算法。
关键词:微粒群算法;K 均值算法;图象分类
Research of Image Classification Method Based on Particle Swarm Optimization Zhou Xian-cheng (Department of Computer Science and Electronic Engineering Hunan Business College, Changsha Hunan 410205,China) [ABSTRACT]:This paper proposes a new image classification algorithm based on Particle Swarm Optimization.The new image classification algorithm has been applied to MRI images to illustrate its applicability.The experimental results show that the proposed algorithm not only avoids the local optima,but also has greater searching capability than K-means algorithm,yielding promising results.
[Key Words]: Particle swarm optimization; K-means algorithm; Image classification

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !