×

基于MEMS工艺的八角形前腔 亚毫米波集成喇叭天线解析

消耗积分:1 | 格式:rar | 大小:0.4 MB | 2017-11-17

分享资料个

1 引言
  在亚毫米波频段,相比较于微波毫米波频段,由于频率更高、波长更短,因而相应的器件尺寸更小。而天线作为尺寸和波长大小密切相关的器件,在亚毫米波频段的设计具有很大挑战。一方面,运用新材料、新工艺加工微小尺寸并能满足亚毫米波公差要求的天线;另一方面,根据亚毫米波系统的特点,研究平面集成天线,将天线和检波器、混频器等器件运用集成天路的工艺加工集成在一起,避免分立结构带来的连接问题。
  MEMS技术是在20世纪90年代逐步形成的,具有高性能、高效率、低成本、高可靠性等诸多优点。MEMS 技术在微波、毫米波已经有了广泛的应用,由于其对中等尺度(mesoscale)(1μm~1mm)模型加工具有特殊的优越性,因此对THz波段使用的微小器件的制造具有明显的优势。
  对于亚毫米波频段的平面集成天线而言,基片介质是需要考虑的重要因素。基片介质上的平面天线趋于将大部分能量辐射进介质中,而不是另一侧的自由空间。解决这个问题通常有两种方法,一是在基片介质一侧集成与相同介电常数的透镜;二是采用很薄的基片介质。前一种方法需要很高的透镜加工工艺,介质透镜中的吸收和反射损耗不可避免,且1/4λ匹配层技术尚有待提高。后一种方法减小了基片介质的影响,天线可近似于在自由空间中,但薄基片的支撑弱,需要在结构上加以改进。
  1990年,Rebeiz等人设计了集成的喇叭天线,他们将平面天线加工在μm量级厚的介质膜片上,膜片内置于运用MEMS湿法腐蚀而成的硅棱锥喇叭腔。该方法很好的解决了薄膜的支撑问题且增强了天线的辐射,但由于硅晶片厚度的限制(通常不超过800μm),集成喇叭的口径受到严格限制,为了增强辐射,他们将机械加工的喇叭口和集成喇叭天线结合在一起,形成“准集成”喇叭天线,以增强辐射特性。“准集成”的方案在频率较低的亚毫米波频段可行,到了900GHz左右,会给机械加工带来极大的困难。
  本文提出了一种基于MEMS工艺的新型喇叭结构,设计适合于亚毫米波高频段的集成天线。
  2 工艺
  本文中采用的MEMS工艺的主要材料是单晶硅,它具有特殊的晶面结构。所采用的MEMS加工工艺有干法刻蚀,也即深反应离子刻蚀(deep reactive ion etching, DRIE)和湿法KOH腐蚀(wet KOH etching),两种工艺中,单晶Si都是重要的材料,其具有多方面的良好特性,以少量掺杂物显著地改变半导体的性质,由机械化学抛光可获得nm级的表面粗糙度,弹性和刚性系数良好,以及各向异性蚀刻和劈开等良好特性。Si湿法各项异性刻蚀下,V形槽可以在(100)基片上制作,其(100)面与(111)面形成54.7°的角,垂直侧面的槽可以在(110)基片上制作,其尺寸容限可达到1.0μm。
  干法刻蚀可以加工的复杂形状的图形,但同一版的深度是一样的,且不能太深,无法在纵向做出较复杂的结构。湿法腐蚀可以利用单晶硅的晶格方向纵向腐蚀出特定角度的结构,但需要掩膜形状简单。
  3 结构
  Rebeiz等人设计的集成喇叭天线制作工艺只运用了湿法腐蚀工艺加工,受硅晶体的特性所限,棱锥背腔的顶角70.6˚,前腔的部分高度受限于硅晶片的厚度,虽然可以通过多层晶片叠加以增加其高度,但喇叭张角局限于70.6˚,因而天线的辐射性能比较固定,尤其是天线的辐射方向图。尽管可以通过在前腔之前再集成机械加工的不同张角的喇叭结构加以改善,但在900GHz频段,波长仅有300多μm,机械加工的精度很难得到保证。
  为此本文提出了一种新型的完全运用MEMS工艺加工制作的集成喇叭天线结构,如图所示。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !