×

浅析汽车点火系统中对智能IGBT技术的需求

消耗积分:1 | 格式:rar | 大小:0.4 MB | 2017-11-21

分享资料个

若从安装在汽车分电器中的机械触点技术算起,点火系统经已走过一段很长的发展历程。最新的点火IGBT、混合信号IC及封装技术,使“线圈上开关”技术所允许的种种系统优势得以实现。因此,本文分析了汽车点火系统,探讨了汽车点火系统中对智能IGBT技术的需求。
  1汽车点火系统
  要产生火花,所需的器件包括电源、电池、变压器(即点火线圈),以及用于控制变压器初级电流的开关。电子学教科书告诉我们V=Ldi/dt.因此,如果线圈初级绕组中的电流发生瞬间变化(即di/dt值很大),初级绕组上将产生高压。如果该点火线圈的匝比为N,就能按该绕线匝数比放大原边电压。结果是次级上将产生10kV到20kV的电压,横跨火花塞间隙。一旦该电压超过间隙周围空气的介电常数,将击穿间隙而形成火花。该火花会点燃燃油与空气的混合物,从而产生引擎工作所需的能量(如图1)。
  浅析汽车点火系统中对智能IGBT技术的需求
  图1:汽车点火系统
  除柴油机外,所有的内燃机中都有一个基本电路(汽车点火系统)。用于点火线圈充电的开关元件已经历了很大演变:从单个机械开关、分电器中的多个断电器触点,到安装在分电器中或单独电子控制模块中的高压达林顿双极晶体管,再到直接安装在火花塞上点火线圈中的绝缘栅双极性晶体管(IGBT),最后是直接安装在火花塞上点火线圈中的智能IGBT.
  2智能IGBT
  很多年前,IGBT就已成为点火应用中的开关。图2所示为IGBT的剖面图。较之于其它技术,IGBT有如下一些重要优点:
  1)大电流下的饱和压降低;
  2)易于构建出能处理高压线圈(400~600V)的电路;
  3)简化的MOS驱动能力;
  4)在线圈异常工作时能承受高能耗(SCIS额定范围内)。
  浅析汽车点火系统中对智能IGBT技术的需求
  图2:IGBT剖面图
  图2所示的点火IGBT示意图包括了几个额外的重要元素。集电极到栅极的雪崩二极管堆建立起“导通”电压,当集电极被来自线圈的反激或尖峰脉冲强迫提升到该电压时,IGBT将导通,此时IGBT会消耗其处于活动区时在线圈中积蓄的剩余能量(而不是将其用于产生火花)。采用这种雪崩“箝位”电路后,IGBT可限制箝位电压,使其远远低于N型外延掺杂/P形基(Nepi/Pbase)半导体的击穿电压,以确保其安全运行。这样就能显着提高点火IGBT对自箝位电感开关(SCIS)能量的承受能力。而这承受能力是一个额定指标,即点火线圈中的能量每次被释放为火花时IGBT所吸收的能量。通过限制初级线圈上的电压,点火线圈本身也得到过压保护。
  最新一代点火IGBT已能大大减小IGBT中的裸片面积,且仍保持出色的SCIS能力。这一进步正在催生多裸片智能IGBT产品。这类智能产品将高性能BCDIC技术与高性能功率分立元件IGBT相结合。智能IGBT线圈驱动电路的需求动因在于:功率开关的发展方向由外置的引擎控制模块变为直接位于引擎中火花塞上的点火线圈内的构件。当点火线圈位于火花塞上,这种结构称为“火花塞上线圈(coilonplug)”;当线圈驱动电路包括在线圈中,这种结构则称为“线圈上开关(switchoncoil)”。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !