面向中文问答匹配任务,提出基于深度学习的问答匹配方法,以解决机器学习模型因人工构造特征而导致的特征不足和准确率偏低的问题。在该方法中,主要有三种不同的模型。首先应用组合式的循环神经网络( RNN)与卷积神经网络(CNN)模型去学习句子中的深层语义特征,并计算特征向量的相似度距离。在此模型的基础上,加入两种不同的注意力机制,根据问题构造答案的特征表示去学习问答对中细致的语义匹配关系。实验结果表明,基于组合式的深度神经网络模型的实验效果要明显优于基于特征构造的机器学习方法,而基于注意力机制的混合模型可以进一步提高匹配准确率,其结果最高在平均倒数排序(MRR)和Top-I accuray评测指标上分别可以达到80. 05%和68. 73%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !