×

基于分层编码的深度增强学习对话生成

消耗积分:1 | 格式:rar | 大小:1.10 MB | 2017-11-25

分享资料个

  面向对话生成问题,提出一种构建对话生成模型的方法——基于分层编码的深度增强学习对话模型( EHRED),用以解决当前标准序列到序列(seq2seq)结构采用最大似然函数作为目标函数所带来的易生成通用回答的问题。该方法结合了分层编码和增强学习技术,利用分层编码来对多轮对话进行建模,在标准seq2seq的基础上新增了中间层来加强对历史对话语句的记忆,而后采用了语言模型来构建奖励函数,进而用增强学习中的策略梯度方法代替原有的最大似然损失函数进行训练。实验结果表明EHRED能生成语义信息更丰富的回答,在标准的人工测评中,其效果优于当前广泛采用的标准seq2 seq循环神经网络(RNN)模型5.7-11.1个百分点。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !