如何提高系统的推荐精度,是当前推荐系统面临的重要问题。对矩阵分解模型进行了研究,针对评分数据的群结构性问题,提出了一种基于评分相似性的群稀疏矩阵分解模型( SSMF-GS)。首先,根据用户的评分行为对评分数据矩阵进行分群,获得相似用户群评分矩阵;然后,通过SSMF-GS算法对相似用户群评分矩阵进行群稀疏矩阵分解;最后,采用交替优化算法对模型进行求解。所提模型可以筛选出不同用户群的偏好潜在项目特征,提升了潜在特征的可解释性。在GroupLens网站上提供的MovieLens数据集上进行仿真实验,实验结果表明,所提算法可以显著提高预测精度,平均绝对误差(MAE)及均方根误差(RMSE)指标均表现出良好的性能。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !