针对现有球面嵌入算法在非近邻点间的距离度量不准确或缺失的情况下,不能有效地进行低维嵌入的问题,提出了一种新的球面嵌入算法,它能够只利用近邻点间的距离,将任何尺度的高维数据嵌入到单位球面上,同时求出适合原始数据分布的球面半径。该算法从一个随机产生的球面分布开始,利用KL散度衡量每对近邻点间的归一化距离在原始空间和球面空间中的差异,并基于此差异构建出目标函数,然后再用带有动量的随机梯度下降法,不断优化球面上点的分布,直到结果稳定。为了测试算法,模拟产生了两类球面分布数据:分别是球面均匀分布和球面正态分布的数据。实验结果表明,对于球面均匀分布的数据,即使在近邻点个数很少的情况下,仍然能够将数据准确地嵌入球面空间,嵌入后的数据分布与原始数据分布的均方根误差( RMSE)低于0.000 01,且球面半径的估算误差低于0. 000 001;而对于球面正态分布的数据,在近邻点个数较多的情况下,该算法也可以将数据较准确地嵌入球面空间。因此,在非近邻点间距离缺失的情况下,所提方法仍然可以较准确地对数据进行低维嵌入,这非常有利于数据的可视化研究。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !